

数字调音台测试方法及解决方案

——基于《GYT 274-2013》标准

度纬科技 Application Notes-030-V1.0

https://www.doewe.com

一、概述

本文基于《GYT 274-2013 数字调音台技术指标和测量方法》当中的测试步骤,将介绍如何使 用音频分析仪测试数字调音台的模拟输入-模拟输出接口指标。

NY IT	项目		675 obs -244 [10]	技术指	标等级	201.002-2-2-4
戶亏			频牵氾固	I 级	II 级	测重方法
1	最大输出	出电平	997Hz	24dBu	22dBu	见 6.14
2	最大输入	入电平	997Hz	24dBu	22dBu	见 6.15
3	等效输入 (话筒轴	入噪声 俞入)	$997 \mathrm{Hz}$	≪-125dBu	≪-110dBu	见 6.7
4	信噪比 (线路输入)		997Hz	≥70dB	≥65dB	见 6.8
5	幅频特性	话筒输入	0011	±0.5dB 内	±1.0dB内	ELC O
		线路输入	20Hz~20kHz	±0.2dB 内	±0.5dB内	火 6.9
6	总谐波失真加噪声		$20 \mathrm{Hz} \sim 20 \mathrm{kHz}$	≤0.05%	≤0.10%	见 6.10
7	通道间电平差		$20 \mathrm{Hz} \sim 20 \mathrm{kHz}$	±0.5dB 内	±1.0dB内	见 6.11
8	通道间隔离度		$20 \mathrm{Hz} \sim 20 \mathrm{kHz}$	≥80dB	≥70dB	见 6.12
9	通道间相位差		$20 \text{Hz} \sim 20 \text{kHz}$	≤0.5° ≤1.0°		见 6.13

图 1

图 1 所示为标准中规定的模拟输入-模拟输出接口的全部测试指标以及指标要求,包括:最 大输出电平、最大输入电平、等效输入噪声(话筒输入)、信噪比(线路输入)、幅频特性、总 谐波失真加噪声、通道间电平差、通道间隔离度以及通道间相位差。下文将主要介绍如何使用 音频分析仪测试信噪比、幅频特性以及总谐波失真加噪声。

二、测试准备

2.1 链路连接

图 2

音频分析仪输出测试音频给被测调音台, 音频信号经过调音台后再环回给音频分析仪进行分析, 以下测试均按照此方式连接音频分析仪与被测物。

2.2 调音台测试状态

根据标准方法中的说明"除数字调音台的话筒输入通道前置增益置开启外(根据被测设备标称值 设定,建议值为 54dB),其他输入通道前置增益置于 0dB,且各通道的声像调整、均衡控制、压限 处理等功能处于关闭或旁通状态。测量过程中,仅被测通道的衰减器放置在 0 刻度位置,其余输入 通道的衰减器均处于-∞刻度位置。如数字调音台设有总输出控制衰减器,应将其置于 0 刻度位 置。"调整被测调音台的状态。此外,有些测试项还要求将被测物调至特定状态,只需按照标准方法 调节即可。

三、测量方法

3.1 信噪比 (线路输入)

标准测量方法:

1) 开启测试仪输入端 20Hz~20kHz 带通滤波器;

- 2) 在被测数字调音台输入端加入 997Hz 基准测量电平的正弦波测试信号,通过测试仪读取输出电 平值 U1;
- 3) 撤除测试信号, 在输入端加上等额匹配电阻;
- 4) 记录输出端的噪声电平值 U2;
- 5) 设信噪比为 S/N,则 S/N=U1-U2。

使用音频分析仪自带的信噪比测量功能,在满足标准规范的测试原理下可实现一键测试。下图 所示为信噪比测试界面,按照标准要求设置滤波器、输出信号频率以及电平后点击 start 即可得到信 噪比测量值 S/N=80.954dB,满足 I 级标准要求。

图 3

3.2 幅频特性

标准测量方法:

- 1) 开启测试仪输入端 20Hz~20kHz 带通滤波器;
- 在被测数字调音台输入端加入 997Hz 基准测量电平的正弦波测试信号,记录输出端电平 U0 为参照电平;

 改变测试信号频率值,测试信号频率取样点见标准 6.1 部分,分别记录各频率取样点下的输出 端电平 U。

使用音频分析仪中的频率步进扫描(Stepped Frequency Sweep)功能即可完成此项指标的测

试,如图 4 所示,按照方法要求设置参数后点击 Start 即可得到电平随频率变化的曲线。

图4

如图 5 所示,可查看具体不同频点处的电平值表格,也可将数据导出。

Import	Export Export	X	Unit Hz	• Y Unit	dBu	- Points	Same as Graph	• Data S	Set Measured 1	- 🛛 Clear Data -
	Ch1		C	h2						
	Х	Y	Х	Y						
1	20.0010k	+4.375	20.0010k	-98.159						
2	16.0010k	+4.455	16.0010k	-98.239						
3	12.5030k	+4.502	12.5030k	-98.392						
4	10.0070k	+4.522	10.0070k	-98.299						
5	7.99300k	+4.525	7.99300k	-98.212						
6	6.30100k	+4.511	6.30100k	-98.303						
7	4.99900k	+4.479	4.99900k	-98.028						
8	4.00100k	+4.432	4.00100k	-98.321						
9	3.16300k	+4.365	3.16300k	-98.332						
10	2.50300k	+4.286	2.50300k	-98.341						
11	1.99900k	+4.202	1.99900k	-98.070						
12	1.60100k	+4.120	1.60100k	-98.180						
13	1.24900k	+4.034	1.24900k	-98.161						
14	0.99700k	+3.963	0.99700k	-98.180						
15	797.000	+3.900	797.000	-98.289						
16	631.000	+3.837	631.000	-98.232						
17	499.000	+3.775	499.000	-98.269						
18	401.000	+3.716	401.000	-98.191						
19	317.000	+3.653	317.000	-98.286						
20	251.000	+3.593	251.000	-98.296						
21	199.000	+3.539	199.000	-98.268						
22	163.000	+3.490	163.000	-98.325						
23	127.000	+3.431	127.000	-98.237						
24	101.000	+3.372	101.000	-98.224						
25	79.0000	+3.294	79.0000	-98.293						
26	61.0000	+3.181	61.0000	-98.275						
27	53.0000	+3.100	53.0000	-98.284						
28	41.0000	+2.898	41.0000	-98.143						
29	33.0000	+2.643	33.0000	-98.223						
30	23.0000	+1.950	23.0000	-98.211						
31	19.0000	+1.344	19.0000	-98.244						

图 5

如图 6 所示,在此功能下也可直接查看平坦度结果即为被测物的幅频特性,无需人工计算。

图 6

3.3 总谐波失真加噪声

标准测量方法:

- 1) 开启测试仪输入端 20Hz~20kHz 带通滤波器;
- 2) 在被测数字调音台输入端加入基准测量电平,测试信号频率取样点见 6.1,分别记录各频率取样

点下的输出端总谐波失真加噪声值。

测试总谐波失真加噪声也可在频率步进扫描测试功能中完成,如图7所示在结果显示处选择

THD+N Ratio,按照测试方法配置参数后点击 Start 即可得到总谐波失真加噪声随频率变化的曲

线。

图 7

如图 8 所示,可查看具体不同频点处的总谐波失真加噪声值表格,也可将数据导出。

Stepped Frequency Sweep 🖼 Import 📰 Export 😰 🛛 X Unit Hz • Y Unit % Points Same as Graph
Data Set Measured 1 - 🛛 Clear Data -Ch2 Ch1 Х Y Х Y 20.0010k 0.156617 20.0010k 1 ----2 16.0010k 0.133710 16.0010k ----3 12.5030k 0.126463 12.5030k ----4 10.0070k 0.124147 10.0070k ----5 7.99300k 0.122779 7.99300k ----6.30100k 0.125052 6.30100k 6 ----4.99900k 0.124320 4.99900k ----7 4.00100k 0.124489 4.00100k 8 ----3.16300k 3.16300k 0.126284 9 ----10 2.50300k 0.126575 2.50300k ----11 1.99900k 0.128058 1.99900k ----12 1.60100k 0.129393 1.60100k ----13 1.24900k 0.131873 1.24900k ----14 0.99700k 0.132210 0.99700k -----15 797.000 0.131413 797.000 ----631.000 0.132465 631.000 16 ----17 499.000 0.134700 499.000 0.134889 401.000 401.000 18 ----317.000 0.135547 317.000 19 20 251.000 0.136609 251.000 ----21 199.000 0.138040 199.000 ----22 163.000 0.138581 163.000 ----23 127.000 0.139561 127.000 ----24 101.000 0.141375 101.000 ----25 79.0000 0.142451 79.0000 ----0.143600 26 61.0000 61.0000 ----53.0000 0.144634 53.0000 27 0.147796 41.0000 41.0000 28 ----33.0000 33.0000 29 0.152969 ----0.165735 30 23.0000 23.0000 ----19.0000 31 0.175732 19.0000 ----

图 8

信噪比、幅频响应以及总谐波失真加噪声为常见的三个测试指标,使用音频分析仪也可对标准 中的其他指标项进行测试,详细测试方法可咨询北京度纬科技有限公司。